Activity-Dependent Arc Expression and Homeostatic Synaptic Plasticity Are Altered in Neurons from a Mouse Model of Angelman Syndrome

نویسندگان

  • Elissa D. Pastuzyn
  • Jason D. Shepherd
چکیده

Angelman syndrome (AS) is a neurodevelopmental disorder that results from deletions or mutations in chromosome 15, which usually includes the UBE3A gene. Ube3A protein is an E3 ubiquitin ligase that ubiquitinates proteins and targets them for degradation. The immediate-early gene Arc, a master regulator of synaptic plasticity, was identified as a putative substrate of Ube3A, but there have been conflicting reports on whether Arc is a bona fide E3 ligase substrate. Using multiple approaches, we found no evidence for a physical interaction between Arc and Ube3A in vivo. Nonetheless, activity-induced subcellular distribution of Arc is altered in brains from Ube3am-/p+ mice, with abnormal concentration of Arc at synapses. Furthermore, although activation of Arc transcription is normal, the stability of Arc protein is enhanced in dendrites of hippocampal neurons cultured from Ube3am-/p+ mice. Finally, homeostatic synaptic scaling of surface AMPA receptors does not occur in Ube3am-/p+ hippocampal neurons, reminiscent of neurons that lack Arc protein. Although Ube3A does not seem to bind Arc in a canonical E3 ligase-substrate interaction, Arc-dependent synaptic plasticity is still altered in Ube3am-/p+ mice, which may underlie the cognitive deficits observed in AS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A specific requirement of Arc/Arg3.1 for visual experience-induced homeostatic synaptic plasticity in mouse primary visual cortex.

Visual experience scales down excitatory synapses in the superficial layers of visual cortex in a process that provides an in vivo paradigm of homeostatic synaptic scaling. Experience-induced increases in neural activity rapidly upregulates mRNAs of immediate early genes involved in synaptic plasticity, one of which is Arc (activity-regulated cytoskeleton protein or Arg3.1). Cell biological stu...

متن کامل

Activity-dependent changes in MAPK activation in the Angelman Syndrome mouse model.

Angelman Syndrome (AS) is a devastating neurological disorder caused by disruption of the maternal UBE3A gene. Ube3a protein is identified as an E3 ubiquitin ligase that shows neuron-specific imprinting. Despite extensive research evaluating the localization and basal expression profiles of Ube3a in mouse models, the molecular mechanisms whereby Ube3a deficiency results in AS are enigmatic. Usi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Impairment of TrkB-PSD-95 Signaling in Angelman Syndrome

Angelman syndrome (AS) is a neurodevelopment disorder characterized by severe cognitive impairment and a high rate of autism. AS is caused by disrupted neuronal expression of the maternally inherited Ube3A ubiquitin protein ligase, required for the proteasomal degradation of proteins implicated in synaptic plasticity, such as the activity-regulated cytoskeletal-associated protein (Arc/Arg3.1). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017